Feature Extraction for Outlier Detection in High-Dimensional Spaces
نویسندگان
چکیده
This work addresses the problem of feature extraction for boosting the performance of outlier detectors in high-dimensional spaces. Recent years have observed the prominence of multidimensional data on which traditional detection techniques usually fail to work as expected due to the curse of dimensionality. This paper introduces an efficient feature extraction method which brings nontrivial improvements in detection accuracy when applied on two popular detection techniques. Experiments carried out on real datasets demonstrate the feasibility of feature extraction in outlier detection.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملA multi-step outlier-based anomaly detection approach to network-wide traffic
Outlier detection is of considerable interest in fields such as physical sciences, medical diagnosis, surveillance detection, fraud detection and network anomaly detection. The data mining and network management research communities are interested in improving existing score-based network traffic anomaly detection techniques because of ample scopes to increase performance. In this paper, we pre...
متن کاملRNN (Reverse Nearest Neighbour) in Unproven Reserve Based Outlier Discovery
Outlier detection refers to task of identifying patterns. They don’t conform establish regular behavior. Outlier detection in highdimensional data presents various challenges resulting from the “curse of dimensionality”. The current view is that distance concentration that is tendency of distances in high-dimensional data to become in discernible making distance-based methods label all points a...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملOutlier Detection in Axis-Parallel Subspaces of High Dimensional Data
We propose an original outlier detection schema that detects outliers in varying subspaces of a high dimensional feature space. In particular, for each object in the data set, we explore the axis-parallel subspace spanned by its neighbors and determine how much the object deviates from the neighbors in this subspace. In our experiments, we show that our novel subspace outlier detection is super...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010